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Collision of spinning particles near BTZ black holes”
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Abstract: We study the collision property of spinning particles near a Baflados-Teitelboim-Zanelli (BTZ) black hole.

Our results show that although the center-of-mass energy of two ingoing particles diverges if one of the particles pos-

sesses a critical angular momentum, however, particle with critical angular momentum can not exist outside of the

horizon due to the violation of timelike constraint. Further detailed investigation indicates that only a particle with a

subcritical angular momentum is allowed to exist near an extremal rotating BTZ black hole and the corresponding

collision center-of-mass energy can be arbitrarily large in a critical angular momentum limit.
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1 Introduction

The particle collision near a black hole background
has long history. The possibility of having infinite center-
of-mass energy collision near a black hole was first poin-
ted out by Piran, Shaham, and Katz in 1975[1]. In 2009,
Bafiados, Silk, and West[2], rediscovered this mechan-
ism, known as the BSW process, and they pointed out
that because of infinite center-of-mass energy caused by
collision, the rotating black holes can thus act as particle
accelerators[2, 3]. Along this line, many aspects of BSW
mechanism with various black ‘hole backgrounds have
been investigated. For instance, the Kerr naked singular-
ity[4], the charged spinning black hole[5], the Kerr-
(anti)de-Sitter black hole spacetime [6] and the universal
property of rotating black holes was given in [7]. Other
research related to higher or lower dimensional space-
time background [8—10] is also interesting, such as five
dimensional Kerr black hole can be found in[8] and three
dimensional rotating charged hairy black hole have been
studied in [10]. Furthermore, the BSW mechanism can
help us to optimize the collisional penrose process which
extracts energy from a black hole through particle colli-
sion[11-19].

In three dimensional spacetime, there exists a typical
stationary black hole solution with a negative cosmolo-
gical constant which was first discovered by Bafiados-
Teitelboim-Zanelli (BTZ)[20]. This black hole solution,
because of its similarity and simplicity compared with the
(3+1)-dimensional Kerr black hole, has received increas-
ing attention recently. For example, the spinless particles
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collision around BTZ black hole has been study in [21].
People are interested in the (2+1)-dimensional BTZ black
hole because it can be a good toy model which help to
gain more deep understanding of the same problem in the
Kerr spacetime, since in the BTZ background the analyt-
ical expression usually is possible[22—24], while in the
Kerr spacetime the same analytical treatment for the same
problem is generally very difficult. For example, the col-
lision of fast rotating dust thin shells in (2+1)-dimension
is much simpler compared with the (3+1)-dimensional
Kerr spacetime[22-25].

On the other hand, many authors focus on point
particle whose trajectory is a geodesic. However a real
particle should be an extended body with inclusion of
self-interaction. Compared with the spinless particle, the
orbit of a spinning test particle is no longer a geodesic,
and it has been shown that[26—32] the equations of mo-
tion of spinning particles around a given spacetime back-
ground is discribed by the Mathisson-Papapetrou-
Dixon(MPD) equations [33—35]. By collecting these res-
ults, the authors in [30] show that the collision center-of-
mass energy could be divergent for extremal Kerr black
hole. With these motivations, our research in this paper is
devoted to study the collision of spinning particles around
the BTZ black hole.

The paper is organized as follows: In section II, we
introduce Mathission-Papapetrou-Dixon(MPD) equa-
tions, which describes the spinning particles' motion in
curved spacetime, and apply it to Bafiados-Teitelboim-
Zanelli(BTZ) black hole. In section III, we obtain the col-
lision center-of-mass energy of spinning particles and
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find the condition for the divergence of center-of-mass
energy with either of the particle possessing critical total
angular momentum. Then in section 1V, the motion of
spinning particles with critical and subcritical angular
momentum near the event horizon are analyzed in details,
and it's shown a spinning particle with subcritical total
angular momentum are allowed to exist on or outside the
horizon. Next, in section V, collision of two spinning
particles with subcritical total angular momenta near the
horizon are calculated, and the diverging center-of-mass
energy in the critical limit is obtained. Conclusions are
given in the last section VI. Through out the paper, we
adopt the convention that the speed of light ¢ = 1.

2 Equations of motion for spinning particles

The the metric of BTZ black hole in the Boyer-
Lindquist coordinates reads[20]

2 2
a5 = —g(ndit+ &4 P (d¢ B dt) G)!
g(r) Ir
where
(r*=r)(r’—r?)
g(r) = T, (2
and
r2+r?
M=ser @
rer—
= 3Gl @

and r = r, is the outer horizon, r = y_'is the inner horizon,
M is the ADM mass, J is the angular momentum and / is
a parameter determined by the negative cosmological
constant A (> =-A/3). Note that for the angular mo-
mentum J, |J| < Ml must be satisfied. When the black
hole is extremal(r, = r_), we have |J| = MI.

Under the given BTZ spacetime, the spinning
particle's motion can be described by MPD equations[28,
30]

D 1

5.7 =R M8 6))
D
Esab — Pavh _tha’ (6)

Along the center-of-mass world line z(7), v* = (%)“ is the
tangent vector, % is the covariant derivative, p¢ is the
momentum of the spinning particles, and S is the spin-
ning angular momentum tensor.

In order to obtain the detailed relation between p? and
v¢, supplementary conditions are required to be imposed:
[31, 30]

Sabe =0, (7

P, =—m, (8)

where 7 is not necessarily the proper time of the spinning
particle. Combining the Egs. (2.6), (2.8) and (2.9), the
difference between v* and u“reads[30, 34]

P SabRbcdePCSde

1 . ©)
2(m2 + 1 RocaeSPes e

With direct calculation, we find that v*=u* in BTZ
spacetime where u*= P*/m. It should be noted that the
velocity v* is parallel to the momentum «“ in the specific
property in (2+1)-dimensions, and of course in generally
not valid in 4-dimensional spacetime.

Note that, there are two Killing vector fields
&4 = (0/0n* and ¢ = (0/9¢)" in BTZ spacetime and be-
cause BTZ spacetime is axi-symmetric and stationary,
they can be expanded in the orthonormal triad basis ¢\ as

fa=—gned - =2,

Ir (10)

)

where

e = \Je(r)(dD,,

1
ey = —=(dn),

NG) (11)
@ _ _nr
e = r((dga -~ (ana).

Then, a corresponding conserved quantity can be defined
by Killing vector field & as follows:

1
Q¢ = P64 = 55"V 1ks. (12)

From the equation above, two conserved quantities
can be obtained, namely the energy of per unit mass of
the particle E,,, and the angular momentum per unit mass
of the particle J,,, they are

1
E, = _uaga + Esabvbé‘a,
1 (13)
Jn = ua¢a - %Sﬂbvb(ﬁw

Combining with Eqs.(2.7) and (2.8) we can introduce
the spin s of the particle as
1
§% = ﬁsabsab, (14)
where s is the spin of unit mass. What's more, Combin-
ing with Eq.(2.6), (2.7) and (2.8), the spin tensor can be
written reversely as

g@®) _ _ms(a)(b)
(c)

where gy)p) ) 1s the completely anti-symmetric tensor
with the component &) = 1.

From Eq.(2.16), the non-zero components of the spin
tensor can be expressed in terms of (@ as

us, (15)
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SO (2

—msu-~’,
SO = msu®, (16)
SO —

The explicit expressions of the energy and the angu-
lar momentum per unit mass Ep, and J, in terms of u(®
can be obtained by using Eq. (2.17) and Eq. (2.14) as:

For_ TS
En = g(nu? + (+l_r + 1_2)“(2)’ (17)
I = s \g(ru® + (_r+li;_s + r) u?. (18)

Solving Eq. (2.18) and Eq. (2.19) gives
l(lEm (lr2 +r_ry s) —Jn (lr_r+ + rzs))

u® = , (19
r (r2 - r%) (r2 - fgzr)(l2 —s52)
—E,,.
u® = Im=Ems, (20)
rs
T

By considering the normalization condition of mo-
mentum ¥ @u,) = —m?, we obtain the u! as follow:

MY = (O = @y = m?. @1)

For direct comparison to the spinless case in [21],
now we express the momentum in coordinate basis:

N g _ W)
p(r)_dT_ g(r)’ (22)
, dr
p'(r)= I =pNY(r), (23)
T
d¢p rir W) P(J,~E,s)
P(r)= — =
prn = dr  Ig(nr? " rA(2-s2) 24)
where
Eml(lr2 + r_r+s) —Jn (lr_r+ + r2s)
W(r) = 2= . (25)
Jo—Ems)
Y(r)= W(r) - {m2 + ('“—'“s] ]g(r), (26)
r(1-%)

o = +1 for outwards direction, -1 for inwards direction.
We define the critical angular momentum as

_ E l(lry +r_s)

Jo= @7n

Ir_+rys

and a particle with critical angular momentum J, corres-
ponds to:

Wi(r+) =0, (28)

where i = 1,2 refers to particle 1 or particle 2 in the colli-
sion process. When the particle's spin s =0, the critical
angular momentum introduced here will be reduced to the
spinless case, which already has been investigated in
[21].

The timelike constraint of Eq. (2.23) means p'(r) >0

outside the horizon for massive particles, which in turn
implies W;(r) > 0. Therefore, for particles with the angu-
lar momentum J,, < J,, the positivity of W;(r) gives rise to
a constraint on particle's spin as 1> — s> > 0. Therefore in
the following sections, we restrict ourselves to the case
-l<s<l.

3 Center-of-mass energy of the collision

In this section we intend to find the condition re-
quired for infinite center-of-mass energy collision of two
spinning massive particles near the BTZ horizon. They
are particle i = 1,2 that starts at infinity with masses m;,
energy per unit.mass E,,;, total angular momenta per unit
mass J,,; and spins s; respectively, falling to the black
hole and colliding near the event horizon. Then the colli-
sion center-of-mass energy E,, is given by[21, 30]:

Egp == (P + Ph(rD)(p1,u(r) + pou(r) = m} +mi3
N Wi(n)Wa(r) - VY1 (n)Ya(r)
g(r)
5 P (Tt = En1 51) Iz = En1 52)
PP =sH(P-s3)
where Y;(r) and W;(r) are defined by Eq. (2.26) and (2.27)
with i = 1,2 again labeling particle 1 or particle 2.

We find that the third term of Eq. (3.1) is a % type
when r approaches to the event horizon r,, so we first
need to regularize this term as
- 2Wl(r)Wz(r)— VYi(nYa(r) Wz(r+)Z

li = 1
ron, () Wi(rs)

2
—E s
in which Z; = [m2+{J—ms] ]> 0. (31)
r(1-3)

It is easy to see that E2,, blows up with r — r, if one
of the particle has the critical angular momentum
J.(which means W;(r,) = 0). If both particles possess J,,
then we have,

Wao(ry)  Wi(re)  Epi(lr-+risy)
Wi(ry)  Wi(ry)  Ep(r-+rys1)’

; 29

Wi (”+)
Walro) >

(32)

in which , denotes the derivative with respect to ». For

equal spin collision (s; =s;), the ratio wgi = % be-
comes finite value, which is similar to the spinless case
[21]. Therefore, the only possibility for the center-of-
mass energy goes to infinity is one of the spin, for ex-

ample, sy, satisfies

Ir_
51 :sc:—L. (33)

Iy
However, this is equivalent to require J,,; = J. to be in-
finity according to Eq. (2.28) and thus is impossible to
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achieve in practice.

4 Motion of a particle with critical and sub-
critical total angular momentum

In last section, we showed that if one of the collision
particle possesses critical angular momentum, the center-
of-mass energy E., will blow-up. However, to solid this
conclusion, we still need to check whether the particle
with critical angular momentum J, can satisfy other con-
straints such as timelike constraint in subsection IVA and
radial equation of motion which guarantees the particles
can reach the horizon. Therefore, the aim of this section
is to discuss these constraints carefully.

First we note that for spinless case[21], a particle with
critical total angular momentum J,,, = J.. is not allowed to
exist outside the event horizon while one with subcritical
angular momentum can be allowed. Later we shall invest-
igate the same issue by taking account of spin effect in
subsections [VB to IVC.

4.1 Timelike constraint of p'(r)

The first subsection is devoted to the timelike con-
straint of p'(r). To avoid superluminality, p’(r) should be
non-negative, from Eq. (2.23) we have,

W)

! r) = 2 U, 34
p( <) (34)
since f(r) > 0, the above equation is equivalent to,
WIE, (Irr+r_rys)=Jnlr_rs +2s
W(r) = (En )= Inflr-r. +75) >0, (35)

r(l2 - s2)
Eq. (4.2) gives a restriction of J,, to ensure p’(r) > 0 near
the event horizon where the infinite center-of-mass en-
ergy collision takes place. Considering extremal black
hole and the case —I < s < [, this gives rise to

I < Epl =1, (36)

which means for J,, < J., the timelike condition is satis-
fied. However, for massive particle, when the total angu-
lar momentum takes critical value J,, = J., the timelike
condition is violated. Therefore, in the following sections,
we will consider the subcritical total angular momentum
I < Je.

4.2 Radial motion of the particle: Y(r)

Now we come to the radial motion of the particle, we
start with the expression of p’(r) (2.24), and obtain the ra-
dial equation of motion of the spinning particle:

1
S 7+ V() =0, (37)

where V(r) is the radial effective potential defined by
V(r) = -Y(r)/2, and 7 is the geodesic parameter. Particles
are only allowed to exist in regions where V(r) <0 or

Y(r) > 0 from Eq. (4.4).
For massive particle with m # 0 we consider, the tend-
ency of Y(r) at infinity is

lim Y(r) = —m* x 00 < 0 (38)

r—0o0

which implies a massive particle cannot escape to infin-
ity. Since the expression of Y(r) for massive particle is
complicated, we will investigate it with subcritical total
angular momentum in IVC, especially for extremal black
hole.

4.3 Motion of a particle with the subcritical total angu-

lar momentum

In last subsection, we already know particles with
critical total angular momentum cannot exist outside the
event horizon. So we consider a particle with subcritical
total ‘angular momentum J,,(J,, < J, for the case -l < s <
according to Eq. (4.3)):

E l(lry+r_s) .

Jn=J.—06= 5, (39)

Ir_+r.s
and try to find the range of ¢ that enables the particle to
exist outside the black hole (i.e. Y(r) > 0). With this well-
defined subcritical total angular momentum, we obtain
the corresponding function Y(r) as follows:

Y(r) =Yo(r) + {8(=2Enl(r? = (I = 57)
X(Iry+r_s)—(r_+rys)
(P(-r+r+ ri) +2lr_rys+ r2s2)5)} /

(;’2(12 — 22— +ry s)) . (40)
where
(P (ELE =) mr(P 1)
Yer) == r? ( (Ir—+rys)? 2 ) “h

When spin s is taken as zero, our result will reduce to the
spinless case by identifying & = %15 with ¢ introduced in
[21]. From Eq. (4.7), a particle with subcritical total an-
gular momentum can exist on the event horizon or nearby
outside of the black hole since
2\2

(r—+ry s)5) 0 @)
I+ (12 - 52)

Now we come to discuss Y’(r), which is the derivat-
ive of Y(r) with respect to r, determines how much the
collision point departures from the event horizon r,[21].
First, Y’(r) with critical total angular momentum(i.e.
5=0)is

Y(r+)=(

2 (r% - ri) (Z4E,31 +m2(r_+ry5) 2)

Y’ =
re) Pr,(r_+r.s)?

(43)

on the event horizon. For the extremal case with critical
total angular momentum, since we have r, = r_, by using
Egs. (4.8) and (4.10), we obtain Y(r,) = Y'(ry) =0 on the
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event horizon.
Then with subcritical total angular momentum, Y’(r)

215(—2Emri(l2 —s)(Ury +r_s)+ (Ir_ + )2 + ri) +2r_r,5)0)

is relevant to &

Y'(r)=Y.(r)-

On the event horizon the above equation becomes
Y'(ry) = D28 + D15 + Dy, (45)
where the coefficients read
21<l(r% + ri) +2r_ry s)
Dy=- — (46)
A=)
4lE,, (Iry +r_s)

b= re (P =) (Ir_+rys) “7)

2<rE - ri) (l4E,2n +m2(r_ + r+s)2)
Dy = . 48
0 Pro(Ir_+rys)? (48)

The coefficient D, < 0 by considering s> < /2, the sign
of D, is the same as in spinless case[21]. Along the same
line of [21], by solving (4.12), we found there exists a

max

m \/ri —r? \/lrz + lr% +2rorss
B2 ’

(49)

Enax =

if the unit mass energy E,, < Enmax, the corresponding
Y’(r;) is always negative; on the contrary if E,, > Enax
which is more interesting, the corresponding Y’(r;) can
be non-negative in the range of 6; <6 < and is negat-
ive elsewhere with the boundaries defined as
lSEmr%r(l2 — ) (Ury +r_s)— VA
L = b
Br_+r.s) (l(r% + rz) +2r_ry s)
5 = PE2(* = s (Iry +r_s)+ VA
B(r_+r.s) (l(r% + r%) +2r_ry s) ’
A=PrilP =5 (r_+r.s)*

(l3E,2nr% +m? (r% —ri)(l(r% +r3)+2r_r+s)). (50)

For the extremal black hole, E.x =0. It worths to
note that particles with subcritical total angular momenta
J.—6 satisfying 6, <8<dg, have Y(r,)>0 with
Y’(r;+) > 0 and luckily, can exist outside the event horizon,
which is in contrast to the non-existence of particles with
critical total angular momentum in subsection [VA.

For spinless particle, the infinite center-of-mass en-
ergy collision happens at the extreme point of Y(r) where
usually serves as return point of particle. This is because
in BTZ spacetime, except the point where the particle
starts to fall, ¥Y(r) has no other zero point which is usu-
ally taken as the collision point[21]. In order to find this
turning point of radial motion, we solve the equation
Y’(r) = 0 with the positive root r,,:

P(Ir- +res)(P - s2)?

(44)

’ 2 %
MG ) . (51)

2r.m?

T'm =r+(1+

Consequently whether r,, is greater than event horizon r,
relies directly on the sign of Y’(r;) that has been ana-
lysed above. It is'shown when E,, > Ep.x and 6, < 6 < 0
satisfied, we have Y’(r;) > 0 which in turn implies

T 2Ty, (52)

Eq.(4.19) means the turning point of radial motion is on
or outside the event horizon.

After = applying the extremal condition
Emax = 0, the boundaries (4.17) become:

__

8= >En(l-s—VU-9?).

2
Sr = %Em (1-s+ Vu-9?). (53)

Thus, the relation between r,, and r, can be summarized
as below:

Since -/ < s <[, we have 6, =0< 8 < E,,(I—s) =6 or
equivalently E,,s < J,, < Epl, ry > ry; for other values of
3, rm < ry which is disfavored by the current discussion.

In Fig. 1, § has been taken as 0.01 and we compare
the effective potentials of radial motion V(r) = —Y(r)/2 of
a particle with different spins s and a subcritical total an-
gular momentum J,, = E,,[ -6 in an extremal BTZ space-
time, in which the minimum points mark r, where the
particle is about to return, and it is shown r,, with spins

r-=ry,

0.0002—
0.0001
0.0000}——="" ///
< -0.0001 =
s .
-0.0002 - -
----8==15
~0.0003| I R s=-0.5
s=0
-~ s=0.5
-0.0004 Cem1s N
1.000 1.002 1.004 1.006 1.008 1.010 1.012 1.014
r
Fig. 1. The examples of effective potential of radial motion

V(r)= —%Y(r) of a particle with different spins s and a sub-
critical total angular momentum J,, = E,,[-§ < J. inan ex-
tremal BTZ spacetime. The minimum point of V(r): r,, with
spin  s=-05,0,0.5 are greater than r.. Here
r-=r,=E,=1=m=1,§=0.01, and the longitudinal axis
marks the event horizon r,.
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satisfying —I < s <[ are greater than r,.

5 Collision of spinning particles near an ex-
tremal BTZ black hole and its critical total
angular momentum limit

Note that the divergence condition for center-of-mass
energy with critical total angular momentum J, in section
IIT was found to be unavailable in subsection IVA. Due to
the timelike constraint, both spinning particles are re-
quired to possess subcritical values of total angular mo-
mentum J,,;; = E,;nl— 51,1,,12 E,.»l, with 6L1 01 < SRI be-
cause we pick r, asthe collision point. Then we con-
sider the collision center-of-mass energy E2, by taking
the limit §; — 0.

2l“.(Eml (l | ))JmZ

. 2 — 2 2
[sl,lfl»oEcm(rm) =my+my+0- PR-sHBR-s3)’ 9
in which
Q - lim 2W] (rm)Wz(Vm)— Yl (rm)YZ(rm)‘ (55)

=T &(rm)

Both numerator and denominator of Q tend to zero in
the limit of §; — 0. For this reason, we express O using
L'Hopital's rule with respect to & as

Q — Jlm WZ(rm) (2W1(rm)— Yl(rm) )

5-0 &(rm) m
Wa(rm) Wl(rm)
T [ZW‘(’”) ? (1—s1>]’ 0

with - indicating derivative with respect to 51, in which

2 2
b tm r+(l+s1)

lim W, (r,,) = 57
5,50 1rm) m%r%(l—sl)(l+ 51?2 7
and after series expansion, g(r,,) becomes:
) 26, E2 1t
lim g(r,y) = —— . (58)
010 m1r+(12—s1)

Eventually, collecting all the above ingredients, Q can
be expressed as

Wa(rm Wi(rm
0= lim Wa(ri) W) -2 1(rm)
5120 &(rm) (I=s1)
= 2k tim 22,
5,-0 g I'm
, m3(1 = s1) (B2 14+ m3r3 1+ 51)%)
=k5hiI})W2(rm) 50 (59)
! ml
where k is
m2r2 1+ 51)?
k=1— W](rm)/W (r)= . +( 1)
(I-s1) E2 Pamiri(l+s))?

(60)

Therefore, it is easy to see that the collision center-of-
mass energy E-, of the two spinning particles diverges
because Q diverges at the point r = r,, in the limit 6; — 0.

6 Conclusions

In this paper, we have analyzed the collision center-
of-mass energy of two spinning particles near BTZ black
hole. Our result shows that the center-of-mass energy of
two ingoing spinning particles in the near horizon limit
can be arbitrarily large if one of the particles possesses a
critical angular momentum and the other has a noncritic-
al angular momentum. However, particle with critical an-
gular momentum can not exist outside of the horizon due
to the violation of timelike constraint. Moreover, we
proved that the particle with a subcritical angular mo-
mentum is allowed to exist in near neighbour of an ex-
tremal BTZ black hole and the corresponding collision
center-of-mass energy of two spinning particles taking
place at the point near an extremal BTZ black hole can be
arbitrarily large in the 6; — 0 limit.

It should be noted that there are still many important
issues that need to be investigated in the future. For ex-
ample, inspired by the BSW mechanism, people found
that the efficiency of extracting energy from a rotating
black hole which is usually called the Penrose process
can be greatly improved, especially for spinning particles
[12, 13, 19, 37]. Therefore, with BSW mechanism for
spinning particles in hand, studying the corresponding
Penrose process becomes possible, we hope to come to
this issue in the near future.
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